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ABSTRACT

An analysis of the fully coupled viscous, radiating flow at the stagnation

point of an ablating blunt body at hyperbolic entry conditions is presented. _
An exact numerical solution to the momentum equation has been developed which

replaces the integral method approach employed in previous studies. This

improved analysis yields an accurate solution to the counservation equations under -
conditions of massive blowing where the viscous transport layer is detached from the
surface. The radiative transport model has been modified to obtain an accurate
calculation of both continuum and line transport for arbitrary mixtures of

H, C, ¥ and O atoms. A comparison of our current results for the stagnation
point—surface radiative flux at hyperbolic velocities with recent results of -
a number of other investigators show that (for the case of & non-ablating

surface), when all important—radiating processes are accounted for, agreement

to within about 20% exists. For the case of the blunt body hesting problem

with large surface mass injection (of predominantly hydrogen-carbon ablation

gases) the role of atomic line radiative transport in the ablation gases is

clarified. It is found that strong re-radiation in line transitions from the

hegted carbon atoms negates the absorption of nitrogen-oxygen line radiation

by the ablation gases resulting in no net decrease in line radiation due to

mass injection. When continuum processes only are considered, mass injection
rates of 10% of the free stream mass flux decrease the surface flux to roughly
60% of hte non-blowing level. However, when lines are properly accounted for,

the surface radiative flux is then reduced to only about 80% of the non-blowing level.
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NOMENCIATURE

A absorption-weighted equivalent width of a line or line group
Aij collision integral ratio used in transport properties
Bv Planckian spectral radiant intensity

Ci elemental mass fraction of it element

Cj mass fraction of jth species

Cv mass fraction of ablation products

CP specific heat

EP frozen specific heat

c velocity of light

D effective diffusion coefficient

Dk spectral interval covered by a line group”

Ev monochromatic continuum emissivity

e charge on electron, esu

€ exponential integral function

F radiative flux; also normalized stream function
£, blowing parameter, I'ne(ReS/pr,W)l/2 -

f normalized tangential velocity function u/u6
fi ' averaged line f-number for element i

fnn‘ line absorption f-number

g normalized total enthalpy function H/Hg

I total enthalpy

h static enthalpy; also Planck constant
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IO I modified Bessel functlons

I radiative intensity

K radius of curvature of reference coordinate surface
e arc-length in x-direction

k frozen thermal conductivity

k total thermal conductivity; also Boltzman constant
Iej Iewis number

£ reciprocal average direction cosine

m mass of electron

m mass flux of ablation products

N number density

n; numbexr of l?'.nes in equivalent line group for element 1
P pressure

Pr Prandtl number

Q radiative flux divergence

’QL’C energy emitted by line, absorbed by continuum

QC’ L energy emitted by continuum, absorbed by line
QL’L energy emitted and absorbed by line

R body radius

Reg Reynolds number plUIR!/u 5

r distance of point x, y from axis of symmetry

ES] integrated line absorption

Sc Schmidt number p,é/pé Dg

T ‘temperature

[N free-stream velocity




u velocity component parallel to body

v velocity component normal to surface

W flux equivalent width of a line or group of lines
xj mole fraction of species J

X,y body~oriented coordinate system

z variable in line transport analysis

o line overlap variable

(o )i number of grams of element i per gram of pyrolysis products

v
(oza)i nunber of grams of element i per gram of gir

Y: averaged line half-width for element 1

v spatially averaged half-width

) physical shock detachment distance

s transformed shock detachment distance

i transformed vy coordinate ‘

e density ratio across shock p;/pé

P density

A parameter in momentum equation, pwp,w/eeRe6

W vigscosity; also volumetric absorption coefficient

r line transport function

A line transport function

g transformed x-coordinate

T, optical depth at frequency v

¥ stream function

w solid angle; also chemicgl speciles source term

¢ angle between shock normal and symmetry axis, also error integral
¢ function defined in transport property determination
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(e absorption cross section

Subscripts

i ith element

J jth species

k equivalent line number

m denotes mbtl line in a line group
W body surface cuantities

8 quantities immediately behind shock
« free-stream condition

o line center frequency
Superscripts

Cc continuum contribution

L _ .. line contribution

! denote dimensional variable
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Section 1
INTRODUCTION

The problem of the determination of the stagnation point heating to a body
entering the Earth's atmosphe?e at velocities exceeding escape speed (i.e.
hyperbolic entry) has received considerable attention in recent years. The
earliest works, e.g. Howe (Ref. 1) and Wilson and Hoshizaki (Refs. 2, 3)

used a grey-gas radigtive transport model which was tantamount to an optically
thin analysis. The calculated heating levels thus predicted were unrealiable.
The first realistic tréatment of the spectral character of air emission and
hence the proper accounting of self-gbsorption and radiative cooling appears
to be that of Hoshizaki and Wilson (Ref. 4). This work considered only the
continuous radiative transitions in high temperature air. However, the work
of Biberman and his colleagues (Ref. 5) convincingly demonstrated that, at the
thermodynamic conditions and pathlengths anticipated for hyperbolic entry,
atomic line transitions would be equal in importance to the continuous transi-
tions. Subsequently, a number of investigators, using various line transport
models, presented results for combined conmtinuum and line processes. The
inclusion of line transport was reported by Rigdon et al. {Ref. 6), Page et
al. (Ref. T7), Chin (Ref. 8) and the unpublished work of Wilson and Hoshizaki
(Ref. 9). Some major discrepancies in the surface radiative flux existed
due to differences in the basic absorption coefficient data as well as the

transport models.




Another area of significant uncertainty was the effect of ablatlion product
gases injected imto the shock layer on the radiative heating. This question
was initially examined by Hoshizaki and Wilson (Ref. 4) but their treatment -
of the absorption coefficient for the ablation gases was much too crude. An

improved calculation was reported by Hoshizaki and Lasher (Ref. 10) which
incorporated the recent results of Wilson and Hoshizgki (Ref. 9). The calcu~ -
lation of Ref.10 considered only continuum emission. . Recently Chin (Ref. 8)
reported the results of an investigation of mass injection effects including
line transitions for nitrogen atoms but not those of the atoms present in the

ablation gases.

The work reported herein .is a continuation of the study of fully coupled N
viscous, radiating shock layers including mass injection. The result of this

work is two major improvements over the analysis presented in Ref. 9. Firstly,

the previous integral-method solution has been discarded in favor of a full
calculation of the differential momentum equations. The computational method
developed to obtain solutions to the differential momentum equations is fast

and numerically stable. Moreover & technique was devised to obtain solutions -
to all the governing conservatlon eguations under conditions of arbitrarily
large mass inJjection (Provided,'of course, the fundamental condition of s
thin shock layer is not violated). Secondly, the line transport model was
revised to provide a consistent treatment to the nonhomogeneous line transport
problem and to provide an asccurate calculation of transport in mixtures of

hydrogen, carbon, nitrogen, and oxygen atoms. As a result of these improve-

ments we have considerably increased the accuracy of the computational code.




Finally, the proper accounting of line transport in mixtures of atomic species
shows that (for the flight condition examined) large rates of injection of
hydrogen-carbon ablation gases are ineffective in reducing the line contribution

to the radigtive flux.




Section 2
MATHEMATICAIL DEVELOPMENT

2.1 GOVERNING EQUATIONS . -
Our point of departure is the Navier-Stokes equations simplified under the
thin shock layer approximstion as developed by Ho and Probstein (Ref. ll).*

The governing equations are expressed in terms of the body-oriented coordinate

system shown in the sketch below.

e ,U!

BODY

SHOCK WAVE

COORDINATE GEOMETRY

Here x' is the distance measured parallel to the body (from the stagnation
point), y' is the distance measured normal to the body, and K' is the

local body curvature. The distance of the poiut x', y' from the symmetry

It should be pointed out that these equations are simpler in form than those
used previously in our viscous radiating shock layer investigation (Refs.
4,9,10). These earlier formulations were inconsistent in that they contained
terms of order l/a Re8d . Although inclusion of these unnecessary higher
order terms did not effect the numerical solutions preVLOusly obtained, we
will use the above consistent set of equatlons as tbey afford a cleaner
formulation.

N
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axis is related to x' through the metric variable K by

dr'! = 'Iz(xl) dx!
where - -

K =1+K'y' (1)

Then the conservation equations, valid to order (egReé)—l, are

3 3 =
mass: - 35T (rfpfu’) + —B-F (r'Kp'v') =0 (2)
, ou' e ou’ 1 Tt
x-momentum: p'u -a—x—x + Kp'V' 'a—_y( + K p’u v (3)

_ op' =) dut
= = ox? + ay' ( ! ay()
ov'! =~ ov' 2 op!
. 1 —_ 1 —_—— 1 = e m————
y-momentum: plu’ 5 + Kp'v’ Sy K'ptu Sy (L)
...y OH' = OH' 9 [gl QH' acj
. o Tt = + 1 131 e
energy: pru’ 535 + Kp'v 3y 37" LPr 3y p ? D hj 3y
(5)
s ! 1\ du’ ] ;
ayl 2 (l = PI’) ayt Q
acj . BC<j 3 aCj
] . 1.t et J 2 Ty t
specles: plu d3x ' + Kp v ayr a.y! (P D ayr) + wj (6)

In the energy equation, the symbol Qf is defimed as the radiative flux

divergence, the precise form for which is taken up in Section 3.

Note that in the energy and species counservation equations, the species mass

5




aC,
flux is given by +the binary approximation (Fick's law), p'D!} 5§% where a

single, species independent diffusion coefficient applies. This model of the

true multicomponent diffusion process was proposed by Ilees, (Ref. 12). The
validity of this model will not be pursued in detail other than to recognize

that it 1s valid when the gas mixture consists of two groups of species.

The molecular weight of the members of each group are roughly the same but the
mean molecular weight of the two groups may vary widely. The application of this
model to problems involving mass injection of hydrogen is clearly a crude approxima-
tion as it is physically clear that hydrogen will diffuse further into the

shock layer than relatively heavy species composed of carbon, nitrogen and
oxygen. Some simplified, uncoupled studies have shown that even large differ-
ences in the hydrogen concentration distribution show little effect on the
primary quantity of interest, viz., the radiative energy transport to the

body surface. Finally, we note that Kendall and Bartlett (Ref.13) have

proposed a model which offers a good approximation to a multicomponent mixture

of varying molecular weight and which is, computationally, relatively simple.
Unfortunately, time limitations prevented the incorporation of their model

into this analysis. However, for reference purposes, the formulation of

their model to the viscous shock layer problem is descfibed in Appendix C.

Finally, we note that the above set of conservation laws must be augmented
by appropriate equations of state. In the numerical method to follow, these
equations of state are obtained through a detailed thermochemical calculation
which automatically handles the varying elemental composition conditions
which exist when mass injection is congidered. A description of the thermo-

chemical calculation is given in Section L.
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It is convenient to

as follows:

nondimensionalize and normalize all quantities to

o(1)

u! v! XT 1 4
wuE=gr 5 VE gy 5 X EgT y=% ;5 r=K'r'
[=-] (o]
p 1 M Pl
p = or 3 K = R'K' B o= ET ; p = 5
5 Mo Pl
1 1
H = H,!, — Q = _R—I—Q-r— w = in._'j_]i_
1 U'2 } e’:p"U'3 dJ P;U,;
2 " © o
Then the conservation equations become
. 2 3 (L Rov) =
mass: 2 (zpu) + & (o) = o (1)
. du, 7, 2u oG 3,1 ?d  2u
x-momenbum : pu 5 + Kov 55 Kpuv = - e 5= + B oy (w ay) (8)
)
y-momentum: epu —g—% + eKpv g—; - Kpu® = - g—-§ (9)
3L .~ 3E _ 1 d [p 3E, L %y
energy: pu Ix + Kpv a—y' = €2Re a—y Pr 'a—y + '5% p pDhj —ay—
)
L2 (10)
1 3 [ 1 u
EE N Y
62Re5 oy Pr’ By
aC. aC, oC.
S d . Jd _ 1 o J
species: o opu s+ Kpv 55 5 Sy (pD 55 ) + w; (11)




2.2 SOLUTION TO THE MOMENTUM EQUATIONS
The momentum equations are now recast in a form convendent for numerical
calculation. First the transformed coordinate 1T, & are defined,
Y y
iy T -
S p—— dy S P Ay

r
0 W _ Yo W

'n:

~

3

6 I
S P dy
e}

w

Krpv

and the normalized stream function

P
Pets

We obtain from the transformation equations the relation

(15)

Using Eqs. (12)-(15), the x-momentum and y-momentum equations are combined.




After algebraic manipulation and retaining only terms of O(e)* and, further,

now restricting the analysis to the stagnation region where

of _
. - 0 (17)

il

the following form of the combined momentum equations is obtained,

2

Q
‘_b

-f2+%=0 (18)

4
[
ol |

oﬂl>’
no

N
=13

an

where A = pwuw/eeRéé. In arriving at Eq. (18) we have made two additional

simplifying approximations. These are

() ~1
W

pH ~ constant = pwuw

The first of these, (r/rw)‘v 1, 1is quite reasonable for the thin shock layers

of interest (typically e = .06 and note that 1 < T/TWWS 1+ e). The second
approximation is potentially more serious since pu varies considerably through the
shock layer. However, as will be demonstrated by the numerical comparison

shown in Section 5, this approximation does not introduce significant error in

the shock layer velocity distribution solution. Moreover, by using this
approximation, the resulting simplified momentum equation can be golved in a

relatively simple mannexr for the difficult case of viscous flow with large

*
Essentially we replace the full y-momentum equation by

opP _ 2
Sy Kpu
in evaluating the pressure gradient term in the x-momentum equation.

9




mass injection.

Equation (18), together with the auxiliary eguation for the stream function

4
an

=3 f (19)

are the system of simultaneous nonlinear differential equations determiving

the velocity field.

1l
@)

at T F o=

Il
p
[

i

at M

The principal nonlinear term f2 in

*
ing Eq. (18) and using Eq. (19).

The boundary conditions are

0 (202)
- n/2 (20p)
1 . (20c)

Eq. (18) can be eliminated by differentiat-

The resulting equation is

a3 5 Vai/ o8F aor -

—3 == 3e|—= i T T B (21)

dn VS VAo an

with the boundary conditions,
£=0 (22a)
=20

2 = = \2 ,
%z_g@%_%(é_)% (22b)
an VAN /A

*
The author is indebted to Dr. Y. S. Chou of the Iockheed Paloc Alto Research

Laboratory for the above solution

to the momentum equation.

10




=1 f=1 (22¢)

The solution to Eq. (21) proceeds as follows. The pressure across the shock

layer (to order e) at the stagnation point is constant at the shock value,

p=p,=(1-c¢) (23)

Assuming the enthalpy distribution is known (as a result of an iterative solu-
tion to the energy equation), the density distribution is obtained from the
state relstions. Then if an estimate to the velocity field fi(ﬂ) is made,
the stream function can be determined from the integration of Eq. (19) with

8§ given by

3~ _(L+0m)

T (2k)
2 § £(n)an
0

With F(T) now known, Eq. (21) is a linear equation (in g;g) from which a new
an

i+
solution £ l('n) can be obtained directly. The sequence of calculations is re-

peated until a satisfactorily converged solution (normally within 1%) is obtained.

For small values of mass injection, more precisely when the parameter

m/Mk < 1, the solution to Eq. (21) is straightforward. However, as

f/i/A Dbecomes much greater than unity, numerical difficulties are encountered.
The difficulties originate from trying to maintain numerical precision when
taking the difference of exponentially large numbers. These numerical Jdiffi-
culties reflect the physical fact that for m/di > 1, the flow near the
surface is an inviscid inner layer whose velocity gradient df/dT at the

surface is given by the pressure gradient term 3e/p. The inner layer is

11




physically decoupled from the boundary condition behind the shock. Hence the
oy i A k
attempt to solve the euntire shock layer as a viscous flow with boundary condi-

tions given at the bhody surface and shock leads to numerical difficulties.

We have circumvented the numerical problems by taking advantage of the fact
that a portion of the shock layer near the surface is characterized as an
inviscid flow. Let ﬂ* be the extent of this inviscid region. Then we

drop the viscous term in Eg. (18) and solve for f£(7) from

o=sn=q

af _ BLEEM) - 3e/p]
an aF(n)

with the boundary condition

(26)

and, again F(T) is known. In the outer region we again solve Eq. (21) as

before, except that the boundary conditions- now become,

£ =) (272)

d2

gﬁg 7 (27p)

(27c)

The problém with this method, of course, is to determine TN¥ which ig defined

by the criterion that for .1 < n* the flow is inviscid. Unfortunately there

12




is no exact (analytical or numerical) method for selecting n* since the

flow becomes inviscid only in an asymptotic sense. Note that ﬂ* must be
such that the argument of the exponential term which appears in the solution
%

to Eq. (21) is less than about 10." That is, ﬂ* must be chosen so that

25 ¢

P(M) = - = F(n') an' < 10

Vi

In practice we have used the simple criterion that ﬂ* is the first value of

N such that

(M) = <— %?) * MAX (MAX a parameter)

where, of course, (- m/2) is the value éf F(N = 0). The stream function dis-
tribution F(1) for two values of the mass injection parameter m/JA is snown
in Fig. 1. Note that for the small mass injection parameter case, the stream
function increases much more rapidly than for the large mass injection parameter
problem. Hence this simple criterion appropriately scales the extent of the
inner inviscid region with the mass injection level. The validity of assuming

an inner inviscid region of various extent can only be ascertained by comparison
with an exact solution. In Fig. 2 an exact solution is given to the full viscous
problem for the case of m/)/A = 2.04 as obtained by double-precision calculation.
Also shown in Fig. 2 are the results of using an inner inviscid solution of

varying extent. It can be seen that selecting MAX = .75 yields accurate results

*

The value of 10 is associated with the fact that elo ~ 0 (104). Hence when
differences of numbers of this size are taken with normal machine precision
(7 usable significant figures) this gives values accurate to 3 significant

figures.

13
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Fig. 1 Stream Function Distribution for Two Mass Injection Cases
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MAX = 0.75

l |

0.2

0.4

0.6

0.8 1.0

TRANSFORMED SHOCK LAYER COORDINATE, 7

Fig. 2 Comparison of Exact and Approximate Tangential Velocity Solutions
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for the approximate inviscid-viscous flow solution. This value of MAX = .75

m/fA > 1. For /WA < 1, the full viscous calculation was used.

2.3 SOLUTION TO THE SPECIES DIFFUSION EQUATTION
Under the binary diffusion model used to write the specigs conservation _
equation in the form given by Eq. (ll), it is not. necessary to calculate the P
transport of each species directly. Rather we adopt the concept outlined by
Iees (Ref. 12) in which the species equation is summed over all species con-
taining a given element i ({(details are available in Ref. 1l ). When this
is done we obtain the Iollowing equation expressing conservation of each

element, 1.

aC, aC, aC.

i ~ i 1 D i '
pu == + Kpv = = (pD =) (28)
ox dy 62366S06 oy oy

Moreover, since. a single diffusion.coefficient exists, it is clear that all
the elemental components of the injected gas will diffuse at the same rate.
Hence the diffusion is actually a binary process of "ablation gases" diffusing
into ailr. We denote by Cv the mass fraction of these.ablation gases. Then

the mass fraction of elemental i is

C; = (o) Gy v (a)); [1~cCl] (29)

where (av)i mass fraction of element i in ablation products

(o)

\l

1 mass fraction of element i in air

16




Equation (28) is now expressed in terms of the diffusion of ablation product
gases, : -

aCv ~ an 1 5] ( BCV
pu — + Kpv = =— (pD
ox Yy €2Reas°5 ay oy

(30)

The boundary condition at the body surface follows from an assumed steady state
mass balance across an interface region across which the decomposition of the
surface occurs instantaneously. The boundary condition at the shock derives
from the condition that for a viscous layer analysis there can be no significant
gradients due to transport effects right behind the shock. Then at the shock
the ablation gas concentration must vanish. If we now transform Eg. (30) to

TN, € coordinates and restrict the analysis to the stagnation region, we

obtain

d 2 dCv 2% C-[‘Cv
an (p“D W) + (e éReéscé) oF - 0 (31)
with the boundary conditions
dac
_ v__ 2 1
M=0 pzD U Reéscsm6(l - cv) (322)
1 =.1 ) c, = 0 ) (32p)

Consistent with the treatment of the momentum equations for the large mass
injection limit, the ablation gas conservation equation is solved separately
for an inner inviscid region and patched to an outer viscous solution. Then

we have for the inner inviscid region,

T




o< n=1n* c (33)

i
[

and for the outer region we solve Eg. (31) subject to the boundary conditions,

¥ 2 dCv 2 3 *
m="1 P D'Eﬁ_ = - e RegScy ar(nM)l1 - Cv(ﬂ )] (34a)

=1 C_ =0 (34p)

Note that the boundary condition, Eqg. (3ka), does not ldentically mmtch

* .
= Cv(ﬂ )]inner = 1. However, for all practical purposes, under

c, (M9

the large mass injection conditions (f/y/A > 1) where the inner inviscid layer

outer

is used, the solution to Eq. (31) in the viscous layer yields C_(W9)|_ . = 1.
2.4 SOLUTION TO THE ENERGY EQUATION
Before recasting the energy equation for numerical solution it is essential

to express the diffugional enthalpy transport term as

Y R Y R =y —_dJd
3y 3T dy MRl 3y : (35) )

Then using Eq. (35) to rewrite Eq. (10) we obtain (further details can be -

found in Ref. 1k4),

aC, aC 2
3 , ~  dH 1 2 p [3H g i a_[ 1 éu_]

(36)

The calculation of the concentration derivatives acj/aci is very difficult

(see Ref. 1k). Moreover, we find that Ie ~ 1 and that a posterori calculations

18




show the term

contributes only slightly to the collisional transport. Hence we will be

content to make the approximation Ie = 1, and thus drop this term from the

energy equation.

Now transforming Eq. (36) to T, £ coordinates and restricting the analysis

to the stagnation region we obtain,

G @ ¢ PR Tor 38 ey 5 (D) (37)

where we have introduced g = H./H6 and also again used the approximation
(r/rw) ~ 1. Following the treatment used in solving the momentum and diffusion
equations for the large mass injection case, we introduce an inner inviscid
region. Dropping the viscous term in Eq. (37), the enthalpy distribution in

the inner inviscid region is calculated from

for 0T =<7" %%=g—§% (38)
with the boundary condition
Mm=0 e=g, (39)

For the outer viscous region we calculate g(1) from Eq. (37) using the

boundary conditions

19




* g(m™) (4oa)

=3
il

o}
i

n =1 g =1 B (40b)

In solving Egs. (37) and (38) it has been tacitly assumed that the flux diver- -
gence term is known. The procedure is to estimate the enthalpy distribution
gi(ﬂ) and solve the momentum and diffusion equations. Then along with

p = constant, we have completely defined the distribution of thermodynamic
variables through the shock layer in physical coordinates. The flux divergence
may then be calculated by the methods outlined in the next section. This allows -
a new enthalpy distribution gj}l(ﬂ) to be calculated. The entire process is
repeated until satisfactory convergence is obtained. Typically we require the -
enthalpy profile to be converged within one or two percent depending on the

degree of varigtion of the surface heat flux quantities.

20




Section 3
RADTATTON TRANSPORT

We consider in this section the analysis underlying the calculation of the
radiative flux F and the flux divergence term @ which appears in the
energy equation. Transport expressions are derived for a one-dimensional
planar geometry with the gas in local thermodynamic equilibrium. Primary
emphasis is placed on the handling of discrete (i.e., line) absorption pro-
cesses in the transport equation. The importance of gtomic lines is now well
recognized as a result of earlier investigations (Reéfs. 5, 15) of radiative
transport in plasmas. Transport due to continuous absorption processes by

atomic species is also included.

3.1 BASIC TRANSPORT EQUATIONS

The flux and flux divergence are given by*

F) = go S(n=lmI(Z\/',V;w) cos 6 dw av (h1)

and

(o2}

a=vr@) = {  wev[ive - sG] @2

o “w=Lbr

where I(y,v,w) is the monochromatic intensity at frequency v and in the

*
For convenience in notation we drop the prime superscript used in Section 2
to denote dimensional gquantities.
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direction w®. The angular integration in Eqs. (41) and (42) is carried out

using the forward-reverse approximation due to Schwartzchild (Ref. 16). The
intensity is divided into two angular groups: +those rays passing in the posi-
tive direction from left to right through a plane of sgymmetry (i.e., a plane
normal to the 7y axis in our one-dimensional planar geometry) and those rays
passing in a negative direction from right to left. The forward-reverse
approximation represents all rays in the positive direction by a single ray

I+ with an average direction cosine 1/z and all rays in the negative direction

by a single ray I  also with an average direction cosime 1/4 (cf. Fig. 3)

Wall . Shackwave
Py
]
+ -
d I (y) I (y)
/ P o -t
g y' =y
1
Ve
-
Ve
y' =0 yt =8

Fig. 3 Geometry for Radiative Transport in a One-Dimensional -
Planar Medium
As is well known, this two-stream approximation is equivalent to the exponential
approximation to the exponential integral kernel function which arises in an
exact formulation.~ An analysis of transport in a umiform gas (Ref. 17 ) shows -
that a value of £ = 2 provides a good approximation to the exact flux gnd

flux divergence values.
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+ -
The monochromatic iIntensities I and I are given by

y 1 1
—Eg p(v,y") dy'
1

I+(V:Y) = Sy-u(v,y') B(v,y') e 7 ay" (43a)
o
:y-l
8 -ﬂg w(v,y") ay"
T (v,y) = g plv,y') Blv,y') e Y (43b)

Y

In carrying out the frequency integration in Egs. (41) and (42), the absorption

coefficient is separated into the continuum and line contribution.

w(v,y) = v,y + wv,y) (hh)

The flux may then bé exXpressed as the sum of a contribution due to continuum
only processes FC and a contribution due to lines but corrected by continuum

attenuation.

F(y) = Fo(y) + FX(y) (15)

For the continuum contribution we can formally express the flux in terms of

integration over space and frequency.

| = ( E(o,y) £(y,6)
F°(y) = Trg {SE yB(v,y') dE (v',¥) - S 7 B(v,y') dE (v,y') ¢ dv
Q lo] (@] (46)
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where the emissive function Ev(y,y') is introduced to simplify the numerical

spatial integrations,

E,(v'5y) = Ev[—(y,y')J =1- exp [—2 gy,uc(v;y") dy" (47)
y

The frequency integration required by Eg. (47) will be considered in Section

3.2.

For the line coumtribution, the integration over freguency is carried out analyti-
cally for individual or groups of individual lines sud the total contribution
summed over all lines or groups of lines,

Pl(y) = ) (7 s, a G- (7 56 @iy (8

all lines i ° -

where the frequency integration is incorporated into an equivalent width variable

Wi(y',y) defined as

~2S Wy Sy -
W () = W=y ] - SA [1-exp(-2  wl0v,9m) ay™) Jav (49)
\v y'

In defining Wi(y’,y) in this manner we have assumed that the Planck function
and continuum absorption are frequency iundependent (at least approximately)
over the interval Av. The evaluation of the frequency integration requlred

by Eq. (49) will be considered in Section 3.3.

In a similar manner, we treat the flux divergence &s due to a continuum only

2h




contribution and terms due to lines plus continuum. Due to cross terms there

are a total of four contributions (Ref. 1T7).

a=vr =%y + %Ly + a™C) + ™M) (50)

Thegse Q terms are defined as

(1) +the energy emitted and absorbed by the continuum;

(o

E (y

»Y) »8)
g(v,y') aE (v,y') + g VoB(v,y) @B (y'Ly)

) = on (W) {SE“

e}

- 2B(v,y)} dv (51)

(2) +the energy emitted by the continuum and absorbed by the lines;

E_(0,y)
Q7 = em S v gi(y') s; (¥) - Ai(y‘,y)] dE (y',¥)
all lines, i o
E\)(st)
7 5,68, - 2,y ] @ y) (52)
o]

(3) the energy emitted by lines and absorbed by the continuum;

Wi(O:Y)
oo ) Wl om0 ey
all lines, i °
Wi(y,é)
+ 7 860 e ) (53)

(o]




(4) +the emergy absorbed and émitted by lines,

Y ¢
A, (0,y) -ﬁg wy (d")ay"
T - on Y S B, (y)e ¥ aa, (y',y)
all lines, i ° ' )
(,6) 'Lgy uy (7"
: SA B e (") - 28, () 5, () (54)

In Egs. (52) and (54) the frequency integration is performed in terms of an .

absorption equivalent width variable Ai(y’,y) defined as

A (ytyy) = Ai[-(y,y’)] = S u§<v,y)[1-exp(-z z Lgy‘uﬁ(v,y")dy")]dv (55)
Av ivy!

3.2 TREATMENT OF THE CONTINUUM PROCESSES

The continuum absorption coefficient varies relatively slowly as compared, say,
to the line absorption coefficient (except in the neighborhood of photoioniza-
tion edges). Hence a monochromatic evaluation of the flux and flux divergence

at selected frequencies followed by numerical quadrature over frequencies is

practical. However, with the aid of a few approximations we can reduce,

congiderably, the computational effort required in the monochromatic approach.
First we will neglect thé role of molecular absorption. The effect of this -
approximation will be examined in Section 5.* For the atomic species H, C, -
N, and O we note from past experience that, for shock layer pressures and

thickness of interest (for values of the product p+R < 500 atm cm), at

*
In the multi-group frequency model which follows, molecular band absorption
could be included by adding additional frequency groups.
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frequencies below the first major photoionization edge, the shock layer is
optically thin. For frequencies above the photoionization edge, the absorption
coefficient is essentially constant (Ref. 18). Hence we can represent the
frequency dependent absorption coefficient by a series of grey absorption
coefficients. For the first optically thin spectral group the appropriate

grey absorption coefficient is the partial Planck mean,

S p(v,T,0) B(v,T) dv

A
pp = 2 (56)

g B(v,T) dv
Av

and T T

-h\)/kT)

c
w(v,T,p) =% P'i(\’:TJp) =Z Nici(V;T:p)(l‘e (57)
i i

where p.i(\) ,T,p) is the continuous absorption cross section for each specie
*
(g, C, N, 0) considered. Note that for each specie the absorption coefficient

has the same form (Ref. 18)

0 < hv < hv; S

T €. -hv-A
- (__l____)
16 KT §i(h\))
o, =T7.26 T, kT e — (58a)
(av)
hv > hv; 5
(G & ()
-(—==) €. (hv
o. = 7.06°16 T, KT e kT = (58pb)

. ()3

*
We neglect the contribution from ionic species which is unimportant for
shock layer temperatures T < 20,000 °K.
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Egs. (58a) and (58b)

= specie statistical weight factor
= gpecie ilonization energy

A = photoionization edge shift
= merged energy level 1imit

= nonhydrogenic correction factor

For the remaining frequency groups which lie above the first major photoioniza-
tion edge, the cross section is chosen as a constant appropriate to the summed
contribution from H, C, N and O atoms. The detailed expressions for the
continuum absorption coefficient used in the calculations are given in Appendix
A. TIn terms of the grey absorption coefficient, the flux and flux divergence
expression for each group k becomes

EK(O,Y) Ek(y,é)

] B (v') B (y',¥) - SO B, (v*) 4B (v,¥')

B, (0,¥) E (y,6)
&) = emuwl [§ B am Gy + (0 B anlry)
o] ) o]

- 2EkJ

and Ek is obtained from Egq. (47) using the grey absorption coefficient

b (y').




3.3 TRANSPORT FOR A SINGLE ISOIATED LINE

We will counsider in this subsection the contribution to the flux and flux
divergence due to a single, isolated line. For the thermodynamic conditions
of interest, an isolated line has a Lorentzian shape characterized by a

. *
strength S and (balf) half-width ¥ determined by electron impact,

L s(yx") (M) 1
(v) = (62)
W Y T [(\)—\)0)2"' ‘YE(Y")]
where T N
® 2
sir) = wiay = I w ) £, (el (63)
o]

, the

In Eq. (63) N, is the number density of the lower state and f_.

f-number** determining the transition probability strength.

For transport within a homogeneous gas (i.e. one having a constant thermodynamic
state), the frequency integration required by the equivalent width variables
W(y,y') and A(y,y') is readily performed (see, for example, Ref. 19)).

For the nonhomogeneous case, the spatial dependence of the half-width ~(y")

in the denominator of Eq. (62) precludes a closed-form evaluation of the
required frequency integration. In order to avoid prohiblitively costly

numerical frequency integrations, it is necessary to replace the actual

*
In general, pL(v) should include, in the denominator of Egq. (62), a line
shift. This shift, however, can be neglected in treating transport problems.

*R¥
That is, the f-number appropriate to a single line, or multiplet, or whatever
collection of line transitions is represented by the lower state number density

N .
n
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spatially dependent half-width vY(y") (again only in the denominator of Eg.
(62)) by a spatially averaged value %Y. Note that for optically thick situa-
tions (more precisely, situations where the line center 1s optically thick
over a spatial extent for which the temperature is nearly uniform) transport
occurs essentially in the line wings. Under this condition, the value of
v(y") in the dencminator of Eq. (62) is unimportent. It is shown in Ref. 20
that best compromise to use in selecting the spatial}.y averaged value for
v{y") is to define, ¥y such that in the optically thin limit the correct flux

value is obtained. ILet us determine thisg value.

Consider the spatial integral appearing W(y,y') and A(y,y'), Egs. (49) and

(55),
F
z =4\ W,y o (64)
:y-l
Define. a transport variable
Y
2 =20 s G e (65)
yf

then using Eq. (62) and approximating v(y") in the denominator by VY(z),

we rewrite Eq. (64) as

Z = zl: L ] (66)

(v-v_)5+7 2(2)

where '\72(2) is yet to be determined. We emphasize that, while VY(z) 1is
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taken as constant over the interval ¥°',y, v(z) is not constant over the
entire layer (0 £ y < §) but rather depends both on the value of y and the
running variable y'. Using this average half-width approximation, we obtain

%
the following expressions for W(z) and A(z) (Ref. 20),

W(z) =2m vy t e ° [Io(t) + Il(t)] (67)

aGx) = 8() [1- &0 1,(0)] (68)

where : o= 2 (68a)
e 2&2

and Io and Il are the modified Bessel functions of the first kind. Con-
sidering first the equivalent width variable W which appears in the flux
calculation, it is clear that W is Independent of Y in the limit t >> 1.

Then in order to obtain the correct optically thin expression in the 1limit

t << 1, viz.

W= Sy s(y") ay" (69)
y!

we require
Y
{7 svG™ ar

¥(z) = L (70)
NECOE
yl

*For the purposes of this discussion we will omit the continuum attenuatbion
factor appearing in Eq. (49) in writing down the results for W. It is clear
that the complete equivalent width is obtained by multiplying Eq. (67) by the
continuum factor. :
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For the flux divergence equivalent width calculation, one can show (Ref. 20)
that the appropriate value for Q is the value at the lozal point at which
V-F 1is being calculated, i.e. Q = y(y). This completes the analysis for the

case of a single isolated line.

3.4 TRANSPORT FOR A COLLECTION OF ISOLATED LINES" 7

In our calculations of the flux and flux divergence, we shall deal with a

"group" of lines defined as a collection of_adjacggt lines within a spectral
interval across which both the Planck function and continuum absorption co-
efficient.can be approximated as being independent of frequency. For the moment
we consider the situation in which the. linesg Withigﬁthe‘group are non-overlapping.
Then Eq. (48) gives the total flux from all lines in the group if we interpret 7
W(y,y') as the sum of the equivalent width of each individual line,

n
W(y,y') = Z W (y,y) (T1)
=1
where n 1is the total number of lines in the group. Our objective is to
approximate the summation rgguired by the right-hand side of Eq. (71) with a

single expression of the form
n
* ¥
Y W (v,y) = nu(s®, V) (72)
m=1 o

* *
where S and v are line parameters gppropri ly averaged over all lines

*
As in the continuum case we shall be considering systems containing a mixture
of H, C, N and O atoms. We shall include only neutral atom transitions, the
contribution from the ionic lines being negligible.

32




in the group. If we make the assumption that all lines within the group are

either optically thin or optically thick (i.e. there does not exist a mixed

*
collection of thin and thick lines) we can derive expressions defining S

*
and Y . This uniformly thin or thick line assumption is reasonable since

most of the lines within a group arise from similar transitions. In any event,

the accuracy of this basic assumption will be checked by comparison with detailed

line-by~-line. calculations in Section 5.
For the optically thin 1imit the two sides of Eq. (72) reduce to
y!

ZS; s (") &y" ==n Sy s*(y") ay"

which requires

3
s =

Bl

) s

m

m

For the optically thick limit the two sides of Eq. (72) reduce to

z 2 By: Sp(7") vy ™) dy":ll/e - n [Sy s (y") v (3") ay" 2
n y 1

Due to the non-linear square root operator in Eq. (75) we must make the

following approximation to proceed further,

2
{Z [g;sm(y")vm(y") ay" 1/2} ~ Sy’ { z [sm(y" N, (7" )]1/2}2 dy"
m I Y
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If the spatial variation of the Smym product is the same for all lines
(differing only by & constant factor) then Eq. (76) holds. The half-width

Ym. is proportional to the elecliron number density,

Yo(v") =B, Ne(y") (17)

where Bm is a constant (i.e. a normalized half-width). The line strength
is proportional to the lower state number demsity and the induced emission

factor,

s (") = 1.10716 £ N (y") [1 - e'h“/kT(y")] (78)

Then under the condition that all 1ines within the group have a common lower

state, Eq. (76) is exact. Proceeding on that basis, Egs. (75) and (76) yield,

2
V- _{z [y 7 } (79
m

We note in passing that a similar treatment of the flux divergence equivalent

*
width function A leads to an identical expression for v .

Within a group we have, in general, line transitions involving all four species -
being congidered (H, C, N and O neutral atoms). Hence the expression for the
effective half-width, Eq. (79), is not valid if we lump all limes within the
group together. TIndeed, for the shock layer problem with mass injection the
spatial variation of the number density of the various atomic species varies -

drastically and the approximation of Eg. (76) is quite poor if we lump Lines

of differing species together. However, for a given atomic species, lines lying
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in the same spectral group do arise from either the same or nearby lower states
and hence for a given atomic sgpeciesthe approximation of Eq. (76) is reasonable.
Then we propose a model in which for each line group we calculate the eguiva-
lent width for all lines of a given atom. The total equivalent width for all
lines of the group becomes,

). ulrsyt) =) m (ST (80)

m=1

*®
where Wi(si ,yi) is the Jumped equivalent width for each atom and where n;,

*  *
S, ., Yi refer to the effective line parameters for that atom. The quantities

S

Bk b

*
> ¥; are calculated from Egs. (74) and (79) where the summation now includes

only those lines for a given atomic specie. Using the expressions for the half-
width and line strength, Egs. (77) and (78), we find that these quantities can

be expressed as
* - - " *
5. (y") = 1.10 16 Ni(y")[l-e hv/KT(y )] £ (81)

Y%ie(y") = N (y") Bi (82)

where Ni(y") is the total number density of the given atomic specie i. The

* *
fi and. Bi are calculable in terms of the basic f-numbers and normalized half-

g * %
widths for each specie. The equations for fi 5 Bi are

-¢_/kT
% f g e m
_ m “m
£ -Z 5 (83)
m
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e /kT 1/2

i= 2*2[ mgme ] } (84)

11m

where, again, the summation is over the lines of a given species.

Examination of the line spectrum for H, C, N, O atoms showed that the lines

could be collected into nine groups. Within each group we consider four

"

"effective lines,”" one for each atomic species,whose f-number and half-width

% % ,
f.,v; are calculated from Eqgs. (83) and (84). Hence we handle a total of

I e

36 "lines'" although the spatial integrals required to evaluate the flux and
flux divergence expressions need only be performed for each of the nine groups.
We tabulate in Appendix B, the pertinent properties of these nine line groups -

including spectral location, frequency interval covered and values of fm and. ,

(2.8 )2,

3.5 TREATMENT OF OVERLAPPING IINES

The analysis presented in subsection 3.4 assumed that the lines within the

group were isolated. We consider here the correction to the group equivalent

width obtained by this approach when overlapping occurs. The exact expression

for the equivalent width for a collection of m lines within the group is _

(again omitbing the continuum attenuation factor)

wgroup =SD [l - eXp - Z S; l-"i (v,5") dy":| dv (85)
m

where the summation is over all lines and D is the spectral interval covered

by the group.
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Under the condition that all lines within the group are non-overlapping, the
group equivalent width is simply the sum of the isolated line equivalent.

widths Wm

=W, =YW (86)

However, when the lines overlap, an analytic result for the frequency integration
in Eq. (85) is not available even for the relatively simple case of just two
overlapping lines (e.g. see Ref. 21). We are then forced to perform numerical
integration when overlapping occurs. To carry out this frequency integration
as part of a coupled radiative flow calculation is not feasible. Such an
approach would significantly increase the computational time required in

the radiative transport portion of the calculation; a portion which already
accounts for roughly 50% of the total computational time. Instead we devised
the method discussed below which empirically correlates the line group
equivalent width for overlapping lines (as deteremined by numerical frequency
integration) with a parameter which measures the amount of line overlapping

within the 1ine group.

The spectral interval D defining a particular line group is a fixed interval.
Thus when thelines are optically thick and strongly overlapping within this
interval, the line group equivalent width approaches the value of D . It is
realized that under such an extreme condition of overlapping the contributions
of the line wings from one line group to the absorption coefficient in adjacent

line groups should be taken into account. Nevertheless, our line transport
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model neglects this effect. This omission is not likely to yield a serious
error since, when one line group exhibits such strong overlapping, the
equivalent widths of adjacent line groups are often _also approaching their
asymptotic wvalue D . Hence .an additional absorption coefficient contribution
from adjacent line groups would have only a small effect on the total transport.
To emphasize, then, we account for overlapping only within the fixed spectral

interval of each line group.

A means of measuring the amount of overlapping within a group is to compare the
isolated line value Wy (as obtained from Eq. (86)) with the spectral interval

D . When WI << D it is clear that the lines must be essentially isolated.

On the other when WI is of the order of D. , then overlapping of lines must

be occurring. Finally when Wi >> D a condition of nearly total overlapping
ocecurs in which case the group equivalent width should be also equal to D .

We postulate then that the variable

o = Wp/D ~ (87)

is a universal measure of the degree of overlap and can be used to correlate

values of the exact group equivalent width for various thermodynamic-pathlength
conditions. To check this hypothesis, a set of calculations were made of the -
exact group equivalent width (as determined by numerical integration of

Eq. (85)) for the spectral interval from hv = 9.80 eV +to 10.80 eV in which

*
10 NI lineg of various strengths and half-widths were located.

The f-numbers and v values were taken from Ref. 18.
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The group equivalent widths were evaluated for the following conditions:

p=1atm and T = 10,000°K ; 12,000°K ; 15,000°K; 17,000°K . For each
thermodynamic condition, pathlengths ranging from 0.1 cm to 50 cm were considered.

These results are given in Fig. la where we plotted W oup/D versus the

gr
correlation variable « defined above. It can be seen that the variable «o

does an admirable job of correlating the exact values. Also, we were able to

fit these numerical results by the following Tunction,

/D = [% tan~ T (g a)] (88)

W
group

For the flux diverscence., the auantitv effected bv overlsppine is

Y L
-S B (v,y")ay”
T(y,yt) = 8(7) - Alwoy') = {wPo,3) e 7 > (8)

which, for the group, becomes

Fgroup = SDiz Mi(v,Y) exp - E:Sy, ui(v’y") dy"} av (90)
m m 5

For nonoverlapping lines we have

1—‘group - FI =z I‘m (91)
m
We evaluated the quantity Fgroup by numerical integration of Eq. (90) for the

same set of lines and the same thermodynamic-pathlength condtions used in evaluating

Woroup * The Tatio rgroup/FI is plotted against the correlation variable «
in Fig. Ub. Again we observe that the exact values of Fgroup are well correlated

39



1.0
0.8 |-
0.6 |
a EMPIRICAL FIT:
3 Tra2 -1,
f(a) = |=tan /2 Q
2 (o) =[5 (n/ ﬂ EXACT VALUES:
&
) _
5 B 04 L
OT=10x 10%K
AT=1.2x10%K
O7T-=15x 10%K
0.2 O T=1.7x10%K
0 | l ! I 1 I |
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

CORRELATION VARIABLE, o = WI/D

Fig, ba Flux Overlasp Function




0.2 |~

EXACT VALUES

P =1atm
O T=10x 10%K
AT =12 x 0%k
O T=15x10%K
O T=17x10%K

EMPIRICAL FIT f(a) = e

2
A

¢ oy 5
A

o

Fig. b

0.8

1.2 1.6 2.0

CORRELATION VARIABLE @ = WI/ D

Flux Divergence Overlap Function

2,4 2.8 3.2




by this variable o . The numerical values were fitted by the expression

(92)

T

In summary then the quantities wgroup and Fgroup are obtained by first
calculating the isolated line limiting values from the analysis of Section 3.4

and then using Eqs. (88) and (92) to correct for overlapping.

To assess the importance of line overlsp, a calculation was made {using the
shock layer temperature-pressure distribution obtained from the non-blowing
coupled flow calculation discussed in Section 5) of the line transport with

and without the line overlap correction. The results are summarized below:

Flux - without Flux - including
Line Group Spectral Interval overlap correction overlap correction

Number (eV) W/cm? ; W/cm?

~ 1.00 - _1.60 . 1.10 x 10° 1.08 x 10°

1.60 - 3.80 A5 ox 105 L5 x 103

5.00 - 6.50 0 0

6.50 - 8.140 .69 x 105 .69 x 10°

8.40 - ¢.80 .56 x 103 .56 x 103

9.80 -10.8 2.34 x 103 1.11 x 103
10.80 -12.00 - .09 x 103 - .25 x 103
12.00 -13.40 - .12 x 103 - .09 x 103
9 13.40 -1k.ko - .ok x 103 - .02 x 10°

Total 4.90 x 10° 3.53 x 10°

o~ N oEw D

We see that in termes of the totgl line flux, the overlap correction results in about

a 30% reduction from a calculation without the overlap correction. Moreover, almost

ho




all the correction occurs for line group 6 which is the spectral region for
which we devised the empirical overlapping line correlation expression (al-
though for simplicity the correlation equation was developed considering a set

of NI lines only).

3.6 LOCAL SOLUTIONS FOR THE FIUX DIVERGENCE

The numerical evaluation of the line flux term given by Eq. (48) affords no
particular numerical problems. One can construct a spatial mesh using a reason-~
able number of grid points (typically less than 50) for which the integrand

in Eq. (48) (i.e. the Planck function) changes only slightly. A similar state-

ment agpplies to the flux divergence terms QL’C and QC’L. However, the

s L

evalugtion of QL presents special difficulties for the case of optically

thick lines. Iet us rewrite QL’L given by Eq. (54) as"

(o,¥) (v,8)
Q™% = om irB(y‘)clA(y,y‘) + 2m SA 7 + By")aaly',y)

A(Ay ) A(Ay )

* el * el (93)
(ay7)

where QT = en [Si B(y') aAly,y') - 8(x) B(y)] (9%)
L,L,+ SA(Ay+)t t )
It _on [ By aalrsy) - 8) B(y) | (95

* -
For convenience we will omit the continuum attenuation texrm. It can be
included in an approximate manner where necessary.
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Iet us consider QL’L’-. Difficulty arises when, for a line which is very
1local

optically thick, AA - S(y). Under these circumstances, replacing B(y') by \

its average value, viz.

5 = B(y) +2B(A:>") (96)

leads to significant error. The correct solution is found by evaluating the

integral in Eq. (94) by parts which yields

At

L,L,- _ B(AtT) A(AtT) - S A(t) %% dat (97)
o

Qlocal

where we have introduced the transport variable + defined by Bq. (68a).

We now replace 'dB/dt by a constant

a8 _ B(At™) - B(o)

Tt e B (98)
and we obtain
Qi’;i;;; = - B(AtT) T(At7) + [B(At‘) - B(o)] A(AET) (99)
where
T(At™) = 8(o) - A(AtT) = e‘At_/2 IO(At‘/e) {100)
A = - )
and AAET) = Sot A(t)at = o0t /2 [IO(At‘/e) + Il(At‘/z)] (101)

BEquation (99) provides the correct limiting form for the flux divergence for

the case of very large optical depth, At~ >> 1. An analogous equabion for

L,L,+
local

Q

may be derived.

Lk




Section 4
THERMODYNAMIC AND TRANSPORT PROPERTIES

4.1 THERMODYNAMIC PROPERTIES

In order to obtain solutions to the conservation equations and the radiative
flux and flux divergence expressions, state relations are required. The
method of solution (cf. Sec. 2.4) is such that, given values of the enthalpy
and pressure, the density and temperature are to be determined. Due to mass
injection of gases containing hydrogen and carbon species, the elemental
composition of the shock layer gases varies from point to point. This vari-
able element problem is handled by performing, at each shock lagyer point, a
complete thermochemical equilibrium composition calculation. The input data
required are the mass fractions Ci of hydrogen, carbon, nitrogen, and
oxygen atoms, the enthalpy (cal/gm) and the pressure (atm). The analysis
underlying this thermochemical caiculation* is described in Ref. 22. A
user's description of the detailed input required including the basic thermo-

dynamic data for each specie is given in Ref. 23.

Due to requirements on the specification of certain base species (ecf. Refs. 22
and 23) it becomes necessary to separate the computation into a high tewperature
region (containing charged species) and a low temperature region (neutral

species only). We list in Table 1 the various specles considered in each

*
This calculation is a separate computer program, the IMSC Free Energy
Minimization Progrem (FEMP) which we have incorporated as a subroutine.
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TABLE T
3PECIES DATA FOR FEMP CODE

Energy Temperature (OK)
Temperature Cee of o Range of Validity
Regime Specie Formation For
(cal/mole) Thermodynamic Data

TOW cN 9.215"3 1000- 15000

c, 0 1000-12000

0, 0 1000-6000

N, o] 1000-2L000

H 5.162“P 1000-16000

0 5.8085™ 1000-24000

c 7.058"H 1000-2%000

N 1.125% 1000-24000

C H 813 1000-6000

CH ~1.699"2 1000-6000

C,H o0t 1000-6000 _

HCN -6.77o9+h 1000-6000

C,H, —2.42™ 1000~ 6000

H,. o o 1000-6000

co ~1.262%2 1000-6000
HIGH . e” 0 2500~ 24000

c 7.058" 1000-24000

" 3.65138"° 250024000

cN 9.215"3 1000- 15000

N 1.10577 - 1000-24000

o 3.73033"7 £500-24000

N 4 48051F° 2500-24000

0 5.8985“L 1000-24000

N, 0 1000-24000

co ~1.26277 2500-12000_

¢t 3.3083°° - 2500-24000

H 5.162"" 1000- 16000
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temperature regime along with the energy of formation* and the applicable

temperature range of the individual specie thermodynamic data.

The condition for switching from low to high region in the FEMP calculation
is not critical since there is a temperature range of common validity. For

convenience we use a criteris based on the value of the molecular weight ratio

MO/M (T)p ’ai)

where Mb is the molecular weight at p = 1 atm T ~ 1,000 QK.

L.,2 TRANSPORT PROPERTIES

A full calculation of the transport properties for the multicomponent

ablation product-air mixture is prohibitively complex for this investigation.
The simplified transport equations of Refs. 24 and 25 have therefore been used.
Blake (Ref. 26) illustrated the utility of these simplified equations in des-
cribing the transport coefficients of air (viscosity and Prandtl number) +to
temperatures of 10,000 °K. For the non-air systems, i.e. mass injection of

C and H, the multicomponent system was assumed to be an effective binary
mixture so far as diffusion is concerned. Consequently, the same simplified
equations were utilized in the non-air systems although no confirmation of

these results is available.

*
FEMP uses a scheme in which the basic diatomic molecular specie of each
element (Eé, Cp, Ny, 02) is taken as having zero energy at 0 °K.
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The approximate viscosity of a gas mixture is given by

b= z S N (102)
i=

where Xy is the mole fraction and By is the viscosity of the species i,

and

1l/2 M. 1/h 2

M, -1/2 n
[+ G G ] (103)

N _i
3., = (1+M.)

ooak J

i

The form of this semi-empirical equation is obtaingd from the rigorous kinetic
theory of multicomponent gas mixtures. (Ref. 27) by assuming the collision
integral ratio: A_ij* (Ref. 24) to be equal to 5/3 and the binary diffusion
coefficient is that for a rigld sphere gas (Ref. 28). Since for most gaseous
mixtures Aij* does not equal 5/3 the constant 1/2 /2 appearing in Eq. (102)
was determined by correlating with experimental date of gas mixtures near

room temperature, For air, Blake (Ref. 26) showed, that when compared with

the more complete analysis of Yos (as taken from Ref. 29), Eq. (102) was applic-
able to 10,000 OK when curve fits of the individual species viscosities (Ref.

30) were used. .___
In order to simplify the calculation of the total thermal conductivity of a
gas mixture, the diffusion of the species was assumed to be that given by an
effective binary mixture as suggested by Lees (Ref. 12). For such a system,

the total thermal conductivity can be written as

18




v
aCl
szkf+ZDhia—T—— (10k)
m ;=1

where kf is the thermal conductivity due to molecular collision with no
" o T

chemical reactions (frozen state), h;, 1is the enthalpy of the ith species,

(105)

Ci is the mass graction of species i and D 1is the effective binary dif-
fusion coefficient of the system. In this form, the thermal conductivity can
thus be identified as the sum of the effects of molecular collision (frozen)
and enthalpy transport. The energy transport of a multicomponent mixture of
polyatomic molecules due to molecular collisions, kf , 1is often divided

into that energy associated with molecular translatioi and an Eucken correction
for the internal molecular energy modes, rotation and vibration. From the
rigorous theory for gas mixtures, Hirshfelder, Mason and Saxena (Ref. 25)
showed that the total energy transport of molecular collisions can be approxi-

mated by an equation similar in form to the simplified viscosity, Bqg. (102),

v
Xiki
k= Z
£ " (106)
1=1 }z x,8_ .
J 1d
J=1
where ki is the frozen conductivity of the species 1 and, again, éij is

given by Eq. (103).




The equilibrium compositions and thermodynamic properties of the gas mixtures
are determined by the method of Section 4.1. The species concentration
derivative aC i/aTM is determined from the calculation outlined in Ref. 26.
The effective diffusion coefficient is taken as the value for the binary dif-
fusion of Né - N (Ref. 30). With these data the total thermal conductivity
of Bq. (104) was determined for the air systems as a function of tempersture.

The results (Ref. 26) were within 15% of the more ccmplete analysis of Yos

(as taken from Ref. 29) for temperabures below 14,000 OK.

The specific heat at constant pressure of the mixture, Cp , Wwas determined

m
from the summation
A ac; -
= + —
op Z (cp h, =% ) (107)
m . i
i=1
where C ig the frozen gpecific heat of each specles. In Ref. 26,

i
heat values from Eq. (107) were shown to agree well with the results of

Predvoditelev (Ref. 31) and Yos' data given in Ref. 29.

Figure 5, taken from Ref. 26, shows the comparison of Prandtl numbers as

determined by Hansen (Ref. 32), Yos (takeu from Ref. 29) and the simplified
Eqs. (102)-(107). The Yos results are considered more complete in that they
include all particle interactions whereas the Hansen data are based on three

body interactions.
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Section 5
RESULTS

We discuss first in this section the comparison between the current detailed
solution to the differential momentum equations and the previous integral
method results. Next we demongtrate the validity of the radiative transport
model developed in. Section 3. Our current results for the radiative and
convective heating rates are campared with those of a number of authors.
Finally we present san investigation of the effectiveness of ablation product
gases of predominantly hydrogen and carbon composition in absorbing the radiant

energy from the high temperature air region.

5.1 COMPARISON WITH OTHER SOLUTIONS
To assess the significance of the pi = constant approximation on the velocity
field solution, we have compared our calculations with those of Howe and Viegas,

Fig. 3 of Ref. 1. The flight conditions for this case are:

U_ = 15.24 km/sec 50,080 Elps
o, = 4.6377 gm/cm’
alt~58 km \ 46 WEL

R = .305mn \ %k

As shown by the comparison in Fig. 6, our solution is fairly close to the more
exact sclution of Howe and Viegas in the viscous layer where transport effects
are felt. The maximum difference is about 25% and this much error occurs only

for a small regioni
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The integral-method solution to the momentum equation previously applied to the
stagnation point shock layer problem was felt adequate for Reynolds number

not too large (Res,s 106) and for very low mass injection levels (fw << 1),
However, for large Reynolds nunbers or high masgs injection rates, the ability

of the integral-method to produce the resulting steep velocity gradients was
questionable. It is of interest then, to compare our current solution using

the full differential equations with the older method. This is done in Figs.

7 and 8. In Fig. 7 we compare a non-blowing solution for a set of flight
conditions yielding Re6 = 4.1 x 106. The differences are larger than anticipated.
Particularly noticeable is the change in the wall velocity gradient, which in-
creased the convective heating by EO% and brought the new results for the con- -
vective heating into close agreement with boundary layer theory. In Fig. 8

we compare results for a case with large blowing, fW = 1.56. Here the old two-
layer integral solution, as expected, is quite inadequate. In making the com-
parisons shown in Figs. 7 and 53, we have used the same enthalpy distribution

in each case for bhoth momentum equation solutions in order to isolate the effects
of the integral and differential treatment. It is clear the current method,

being considerably more accurate, is well worth the added numerical complexity.

In Section 3 we introduced our continuum and line transport models, the develop-
ment of which required various gpproximations. The validity of these models is
best determined by comparing the radiative flux values with a calculation free

from thelr essential. approximations. Such a more exsct calculation is afforded

by our radiation transport code (RATRAP)* in which the continuum contribution i1s

*
The analysis underlying this radiation transport code is given in Ref. 20.
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calculated monochromatically at 86 frequency points and the line transport is
calculated for a total of 289 "line" transitions for H, C, N, and O atoms
treated in 21 "groups." From the results of a coupled flow field solution

with mass injection (see the case discussed under Section 5.2), we obtain the
radigtive flux distributions shown in Fig. 9. Using this same case to define
pressure, enthalpy and elemental composition distributions, we obtain from the
RATRAP code the radiative flux values shown in comparison. The agreement is
remarkably good over. the entire shock layer providing confidence in our approxi-

mate transport models.

Turning now to the completely-coupled radiating shock layer problem, we have
compared in Fig.lor our current solutions with the as yet unpublished work of

Page.* The flight conditions for this comparison case are:

U, = 16 km/sec 52.5%0es
Py = L2 x 1077 em/en’

alt ~ 57 km {27 LBk
R=2.3tm 762 bt

The close agreement seen in Fig. 10 indicatesfthe degree of consistency which
can be obtained between various investiggtors when all important radiating pro-
cesses are included in a reasonably accurate transport model. The current
level of consistency in hyperbolic entry radiative heating predictions is

demonstrated more clearly in Fig. 1ll. Here we have taken from Fig. 15 of Ref.

*®
The author wishes to thank Mr. William Page of the NASA Ames Research Center,
Hypersonic Free Flight Branch, for generously providing these results.
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T, the calculations by Page et al. of the normalized surface radiative heat flux,

¥

¢ = —
1 3
5 Peleo

H
as a function of flight velocity and for various densities yielding the two
curves shown for p = 1.0 atm and p = 0.1 atm. We also have included our
current results as well as those of Chin (Ref. 8), Callis (Ref. 33), and
Rigdon et al. (Ref. 34). In order to account for the slightly differing body
sizes in the calculations of Chin and Rigdon et al. we have scaled the radiative
flux as

F ~ R"2?

For Chin's work, this amounts to a decrease of 6% while for the work of Rigdon
et al this amounts to a decrease of 12%. I+ will be seen from this comparison
that all five predictions lie within about 20%. We emphasize that all of these
calculations account for both continuous and discrete absorption processes

derived from nearly the same basic data.

5.2 SHOCK LAYER SOLUTION FOR MASSIVE BLOWING
We conclude our resulfs with an examination of the effects of large mass in-
jection rates on the shock layer structure and resultant surface heat flux.

The fiight conditions used are again the case

U_ = 16 km/sec

P, = k2 x 1077 gm/cm3
alt ~ 57 km
R=2.3km
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and for normalized mass injection rates of th = .05 and m = .10. These
correspond to values of the blowing parameter fw = 0,99 and fw = 1.97.
The injected gas is the sublimation products of carbon phenolic having the
elemental mass fraction composition: CH = ,019; CC = .,930; CN = 0; and
CO = L,051l. The gas is injected at an enthalpy level corresponding to a sub-

*
limation temperature of 3,300 °K.

The tangential velocity distribution in the transformed T coordinate is

shown in Fig. 12 along with the solution for % = O. The degree to which the
shear layer is detached from the wall is clearly demorgtrated. For the highest
injection rate, we have treated the regiom from the wall to 1 = .4 as inviscid

(cf. Section 2.1).

The enthalpy distribution is shown in Fig. 13. Again we observe the detachment
from the wall of the region where conductive transport plays an important role.
For the highest injection rate there is a virtual absence of conduction at the
wall and the convective heating is reduced by four orders of magnitude. We have
replotted these enthalpy Qistributionsrin the physical coordinate y/8 in PFig.
14. Because of the high density of the low temperature ablation gases, the
physical extent of the ablation layer is small. This reflects the fact that,
due to the high density, the velocity and hence momentum of the ablation gases
is much less than that of the incoming air stream (the momentum ratio at the

wall is ]t‘/JZw/MQ° =4 x 10—5) and hence unsble to penetrate far from the wall.

*

Note that due to the energy of formation of certain molecular species, the
absolute enthalpy of the ablation product is negative at this temperature
(cf. Table I, Section L4.1).
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The prime objective of this study was to investigate the interaction of the
ablation products with the radiant energy emitted by the high temperature air
layer. As part of this question it is of interest to ask what 1s the role

of collisional transport (i.e. "viscous" effects) in this interaction process.
The distribution of the radiative flux divergence expression across the shock
layer is shown in Fig. 15 for the case where fw = .99. The large peak in

the flux divergence is due to absorption by neutral carbon atoms (in the ground
and low lying excited states) which appear in the heated ablation gases.

Fig. 16 shows the spatial distribution of neutral carbon atoms and, for com~
parison purposes, the velocity, enthalpy, and ablation product profiles. Com-
parison of Figs. 15 and 16 demonstrates that the peak in the flux divergence
coincides with the peak in the neutral carbon atom distribution. Moreover,

as seen from Fig. 16, the large increase in neutral carbon atoms occurs in the
region where viscous effects exist, as clearly indicated by the velocity and
ablation product profiles. Thus it appears as though viscous effects (namely,
conduction) are responsible for the rapid increase in enthalpy which in turn
results in the rapid rise in carbon atoms and subsequent radiant energy absorp-~

tion. However, this 1s not the correct interpretation.

The rate of heating of the ablation gases by absorption of radiation exceeds

that due to conduction. Actually viscous effects only spread-out the region of

,Y enthalpy rise over a SOm?What larger Spatial-?xﬁfffwthan would be caléhlatg?
Pﬁikg} in the basisigf an invig?id calculation. Indeed the inviscid calculation of
}} Rzg; 8 (a cai;ﬁlation for a mass flux and Reynolds number condition guite
LQ/ similar to the case being discussed here) shows a similar rapid enthalpy rise
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also. Thus, while viscous effects influences the species and velocity
distributions somewhat (the inviscid calculations tend to predict a lower
tangential velocity in the ablation product gases and a correspondingly larger

ablation product layer), viscous effects are of minor importance in the coupled

process of heating and absorption of the ablation product gases.

The spectral nature of the ablation product absorption processes are seen more
clearly by examining Fig. 17. Here we plot the spectral radiative flux at

the wall for the coninuum and line contributions, in terms of the average
spectral value for each continuum band and line groupe* We compare the

spectral distribution of the surface flux with and without mass injection.

Note the significant decrease in the vacuum ultraviolet continuum emission

with mass injection. This blocking effect by neutral carbon atoms due to the

spectral location of its photoionization edges was reported in Refs. 9 and 10.

However, the heated carbon atoms emit both continuum and line radiation. When

the line emission by carbon gtoms 1s properly calculated, it is found that the

carbon atoms emit about ag much as they absorb. Nobe the increased emission

in line groups 1, 2, 3, 4. That is, for the flight condition examined, mass
injection has little net effect on the surface radiagtive line flux. Hence
the efficiency of a carbon-hydrogen mixture injected gas in shielding the sur-

face from emission by the high temperature air region is only one-half the values

previously reported in Ref, 9 which congidered the continuum contribution only.

A comparison of the degree of surface flux reduction due to mass injection con-

sidering both continuum and line processes with the values obtained considering

The negative values for the line flux in some groups indicate that the continuum
flux is attenuated by line absorption.
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processes only is shown in Fig. 18a. TIn this comparison, no molecular

band absorption is included in either calculation.

In our previous studies of Ref. 9, calculations of the shock layer enthalpy
distribution were made both with and without molecular band absorption included.
The resulting differences in the enthalpy profile were small. Those results
are further substantiated by estimates of the amount of additional ablation
product heating which would occur due to molecular band absorption using

the calculated spectral flux which is transmitted by the heated ablation
product gases. It is found that the additional heating rates would not be
adequate to increase the enthalpy levels significantly. Accordingly, an
esimate of the amount of absorption due to molecular bands was made using

the enthalpy profiles obtained without including molecular band absorption

in the shock lgyer calculation. This estimate employed an uncoupled radiative
transport calculation (i.e. RATRAP code) and are given in Fig. 18b. Also shown
on Fig. 18b are the results of Chin's calculation (Ref. 8) in which he considers
continuum processes (including molecular bands) but nitrogen lines only. We
observe that Chin's value lies close to the older conmbtinuum-only flux reduction
level. This is further evidence that carbon lines should be included and due
to emission from these lines, a smaller degree of flux reduction results.
Finally, Fig. 19 compares the spectral flux distribution of the surface with
and. without molecular band absorption as obtained from the uncoupled RATRAP
calculation. The location of the spectral regions of increased absorption
identified the following molecular band systems important in absorption:

CO Wth positive; C, Mulliken, Freymark, and Fox-Herzberg.
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Section 6
CONCLUDING REMARKS

The current effort has resulted in the following developments:

i/

The previous integral-method velocity field solution was inadequate

for the large mass injection and/or Reynolds number flows of interest.

The current computational method for solving the differential momentum
equation is straightforward, numerically stable, and applies to large

mass injection problems.

The line transport model was revised to provide a consistent treatment
of the nonhomogeneous transport problem for arbitrary mixtures of carbon,

hydrogen, oxygen, and nitrogen atoms.

A comparison with the work of-other investigators shows that, when both
line and continuum processes are accounted for, radiative heating rates
at hyperbolic entry velocities are in good agreement for the no-blowing

casc.

The proper accounting of line transport, part;cularly of carbon lines,
results in the fact that the radiation flux reduction due to mass
injection of carbon-hydrogen mixture is only about one-half the level

calculated from a continuum only basis.

The role of ,ablation product molecular absorption becomes more signifi- _

cant in light of the revised line transport calculations.
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Appendix A
EQUATIONS FOR AVERAGED CONTINUUM ABSORPTION COEFFICIENTS

The continuum transport is calculated using a 7T-band model. In each group we
calculate -
b= NHQ

gt N9 T Moy * N9,

The equations for the band-averaged absorption cross section are listed below.
Group 1: O < hv = 10.00 eV

In band one we use a partial Planck mean in which ci for each element has

the general form

3 —ei/kT
5.04x10° kT IT'. K_ e . 8. .
= 10 A/kT i [ i i 2]
o, = By e L T (h\)T )

I

- (nv —thi)/kT

B

$.2
+ kT [ai + 2Bi(kT)2] - kT e o, + Bi(hvB—thl) ]

- -(hvB-thi)[zsi(h»B-thi)(kT) + 2Bi(kT)2]

where K _ = 7.26_16 cnt eV

hMB = 10.00 eV
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h -hvB/kT hvy 3
= - e (= v 32

oy >+6]}

For each specie i -we have the parameters

= 5.0h x 103(kT) {

Hydrogemn: = 2,40 eV

.00

Carbon: . . 11.26 eV

0.0488

Nitrogen: . . 14.54 eV

.24 . 0.0426

= b,22 eV . 13.61 eV

.2h . 0.0k426

10.0 eV < hv < 10.80 ev

1T ~L126/KT L, - 1T 2 T5/KT | 5 51T o4 18/kT
b

C

10.80 eV < hv < 11.1 eV




%

_ _%_ [8.5‘17 e-l.26/kT + oo 1T e-2.75/}.«:2[1 + 5.0°7 e-h.lB/kT]
C

o - & [526T o73:500]

11.1 < hv < 12.0

o - %___ [9.9-17 48,517 o-L1-26/xT, , =17 o2-T5/kT 5.0"17 ool 18/xT
c

Sy

- 1% [5.16"17 e'3'50/kT]

12.0 eV < hv < 13.Lh eV

[9_9-17 + 8.5'17 e—l.26/k'l‘+ .o~ 1T e—2.75/kT+5.O—l"(' e-u.18/kT]

_ 1 -17 -2.30/kT -17 -3.50/kT
ox ——%[6.h e B 5.16 e :]

13.4 eV < hv < 1h.3 eV

_ 1.1877

B ZH

(e
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%?_[9.9-17 + 857 o~ L1-26/KT, , ,-17-2.75/KE, 5_0-17e-u.18/kT]
C

O‘C =
~17
% = 3.2
0
_ 1 ~17 _~2.30/kT ~17 -3.50/KkT
oy = . [6.h e + 5,16 ! e ]
Group T: 14.3 eV < hv < 20.0 eV
_ 1,187 . _ 3.6°17
O, = —g—— o, ==
H P > %o Zy
o = %_ [9_9-17 + 8.57 17 e-1.26/1<T N 2_2-17 e-.2.'75/1:TJL 5.0-17 e-h.18/kc[j
C
oy = %5 [3.627 + 67T 2:30/6T 5 16717 o=3.50/kT]
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Appendix B
EFFECTIVE LINE PARAMETERS

We derived in Section 3.4 the following expressions for the effective f-number

and half-width for transitions in atom 1,

-e /KT
*zl_ZL

-e /KT 1/2
i - 2-*§:[ mgm ]

Collecting all transitions which arise from a common lower state £ we can

rewrite these expressions as

n

_Lz
T i
A

/2, 1,1/2

B, = 2*Z(f%) (Py )

oy 1 A
where le is the fractional population of state £ in specie i,

-ez/kT
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(f&z,&i)l/2 - - (fmfgm)l/2

m in £

The states £ considered for H, C, N and O are listed in Table B-1.

The spectral composition of the lines is shown by the data given in Table B-2.
In this table we 1ist the nine line groups used in calculating the total line
transport. For each line group we list its spectral location and its spectral
interval. For each element we list the nuimber of lines n,; in the group, and
for each state 4 of that element the parameters ,ﬁzi and (fezi)l/2. These
line parameters were obtained using the tabulated f-numbers and half-widths
from Wilson and Nicolet {Ref. 18) for €, N and O atoms. For H atoms, the
investigation of Lasher, Wilson, and Greif (Ref. 35) showed that almost all the
line transport is accounted for by the first three-members of the Lyman and
Balmer series. - Hence ouly these six lines were included. The f-numbers were

taken from Griem (Ref. 36) and the half-widths determined by matching a

Lorentzian profile to the asymptotic wing shape of Griem.
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TABLE B-1
FRACTTIONAT, POPULATION DATA

Element i State £ g, €,
H 1 2 0
2 8 10.20
c 1 9 0
2 5 1.26k
3 1 2.684
Ly 5 L.183
> 12 T-532
6 36 8.722
7 60 9.72k
N 1 Iy 0
2 10 2.38k4
3 6 3.576
b 18 10.Lk52
5 54 11.877
6 90 13.002
0 1 9 0
2 5 1.967
3 1 3.188
L 8 9.283
5 2k 10.830
6 Lo 12.077
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TABLE B-2
LINE GROUP DATA

Center

Number

Spectral . .
Group Frequency Interval |Element of State £y (fBl)l/2
No. J hvd DJ i lines ni| 4 L 4

1 1.30 ev .600 eV c 28 5 1.16 7. 457
6 l.12 1.91‘10

7 9.977+ | u.8977
N 30 4 208t | 1.u871L

5 1.52 .26 10
6 1.12 u.79"lo
0 10 5 1.0k 1.20710
6 1.14 2.87“10

> 2.70 eV 2.20 eV H 3 2 g.0571 | 2.3771°
c 7 5 4.067% | g.40712
6 6.98’2 7.9&‘11

N 16 L 9.08'1 1.64" %0
5 3.15‘2 7.01“1:L
0 11 4 1.02 6.137 1t
5 8.25'2 7.197

3 5.75 eV 1.50 eV c 2 2. 7.29'2 9.18 12
3 6.76‘2 8.75'12

4 7.57 eV 1.65 ev c 8 1 1.05% | g9.577%2
> 1.10°° | .86

3 1507 | 5.937%°

N 2 2 7.507% | 8.p2712

3 6.34°2 | 7.60"*2
5 9.10 eV 1.40 ev C 1h 1 3.297% 3.657 1t
2 1.187% 5.77"10
L 2.367T 6.56'll
W 3 1.08°% | 3.097H

0 1 47172 | s5.087 %2




TABLE B-2

(Cont'd)
Group Frgi’SZEiy ?ﬁiiﬁfﬁzi Element chr;ﬁf)er State | gl (fBi)l/ 2
No. J hyd DJ i lines nj o o £
6 10.40 ev 1.00 eV H 1 L b.16°t 3.02'll
c 4 1 8.652 | 2.3571°
N 16 i 1.80~t 1.07‘13L
2 2.907t | po
3 8.6472 2,28 10
0 2 3 L. 51‘1 9.93‘12
2 1.00°% | 8.85712
7 11.40 ev 1.20 ev c 6 1 4.51‘2 6.07'lo
2 7.0571 | 2.107%°
N 14 1 4.5&‘1 2.71‘12
2 9.63"2 2.3h‘lo
3 1.78'l 2.6~
0 3 3 4_23‘2 2.52'1:L
8 12.70 eV 1.40 ev il 2 1 1.08T | 1.3271°
c 2 1 3797 | 1.9571%
3 1.05 1.27“11
N 11 1 1.55‘l 2.98’ll
2 1.7t 7.08‘ll
3 3.7572 | 1.337%°
0 15 1 1.067% | 1.9771°
2 8.6172 1.80" 1t
3 9.3372 | 8.137Mt
9 13.90 eV 1.00 eV c 1 2 2.95°1 | 5.85712
N 11 1 2247t | 3,270
2 2.92"2 1.4871°
0 10 1 5.2472 | 5.76712
2 7.2072 | 7.0071t
3 6.04"2 8.05‘ll
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Appendix C
MULTICOMPONENT DIFFUSION MODEL

The diffusional processes of the mulbticomponent gas systems evaluated are
assumed. in this investigation to be of an effective binary model. That is,

all species in the multicomponent gas system are assumed to diffuse as two
separate gases.  This model, as originally proposed by ILees (Ref. 12), is a
valid description of.the diffusion processes in a gas mixture if the gas
consists of two groups of species, each with about the same atomic or molecular
weight and about the same mutual collisgion cross-sections. For dissocilated
and partially dissociated air systems, this binary assumption has proven a
valid model (Ref. 12). For the H, C, N, O, system of the mass injecfion
system, the binary diffusion model leads to results which are not physically

correct.

Because of the large difference in molecular weight of hydrogen from the other
elements involved, fundamental diffusion theory would indicate that hydrogen

should diffuse further away from the body surface than occurs with the binary
model. It is of interest to determine the effect of a more realistic hydrogen
concentration distribution upon the radiation transport within the shock layer

and subsequently upon the total wall heat flux.

A description of the transport properties based on a rigo:ous kinetic theory
substantially complicates an already difficult gasdynemic and radiation trans-

port problem. TFor this reason, a simplified diffusion model was desired which
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demonstrated the basic multicomponent transport characteristics without adding
a prohibitive degree of additional numerical calculations. The approximate
multicomponent model recently developed by Kendall and Bartlett (Ref. 13)

is well suited for our purposes.

The key to the Kendall diffusion model is the approximation of the binary
diffusion coefficients between the respective species considered by a Brrela-
tion equation first suggested by Bird (Ref. 13). The diffusion coefficient

utilized is of the form

D., = (c-1)

where D 1is a reference diffusion coefficient and Fi might be termed a
diffusion factor for species i. Equation (C-1) is really a correlation
equation in that once a reference coefficient D is determined, the Fi's
are determined by a least-squares fit of the Dij data available for all
diffusing pairs in the chemical system of interest. The definition of D
is such that the Fi's are independent of temperature and pressure and
therefore also independent of concentration. Hence the Fi's can be deter-
mined a priori for a given set of chemical species. The accuracies which

have been obtained using this procedure are surprisingly good (Ref. 13).

The decided advantage of the caorrelation given by Eq. (C-l) is that the
Stefan-Maxwell relation for the diffusion flux and species concentrations

can be cast in a form involving properties and gradients of individual species
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and of the system as a whole. This greatly simplifies the previous inter-
specie relatioriships characteristic of the multicomponent descriptions.
Neglecting thermal diffusion effects, the diffuslonal mass flux was shown to

be (Ref. 13)

BZi
Ji P Derr 3y (€-2)
where _
DT K. /P, _
D = i 1L
eff ~ M » F.K, /M,
R A A §
and
7 = Ki/Fi, _
i X Ki7Fi
i

Applying the Shvab-Zeldovich transformation (multiplicstion by the mass of

element K in molecule i, o and summing over all species) to Eg. (C-2),

Ki’
the elemental conservation equation can be written (in terms of our body

oriented, curvilinear coordinate system as

oKy HoK, %y
K _3d (% -
fpu 5= + TPV == = (Hrp D pp 5 ) (c-3)

The similarity of Eq. (C-3) to the binary diffusion model is apparent. Now,
transforming Eq. (C-3) into the coordinate system defined by Hoshizaki (Ref.

10), we obtain,"

é_iLﬂ}+F Ly (c-1)
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As there is not an explicit relationship between Zk and ﬁk,

to Eqe. (C-4) must be obtained in the Following iterative manner.

3%, aik aﬁk
ST~ 3K, oN
and L
EEE _ [ kl i
®, "o O
_ g ki EEE
i Fl aKk
where S c =1/% Ki/Fi
1
If we let (M) = Kk

Equation (C-4) can be written, for the stagnation case (Ll

[}
{P(m KK} + F, () % - 0

which has the solution

%
Ek = S ;% e So ¥ an + c,

o]

= 0), as

the solution

We note that

(c-5)

(c-6)

(c-7)

(c- 8)

c and C are constants of integration. Equation (C-8) reduces to the

1 2

elemental concentration solution obtained by Hoshizaki (Ref.lo) for the binary

diffusion model (i.e., P = l/Fl).
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For the Kendall diffusion model, the fumction P(1)) is an implicit function

of Kk; therefore, Eq. (C-8) must be solved in the following iterative manner:
(1) the elemental concentration distributions are obtained from the binary dif-
fusion solution; (2) from the equilibrium chemical program (FEMP), the correspond-
ing specie concentrations are obtained; (3) the gradient of species to elemental
concentrations is then determined from which P can be calculated (Eq. C-6);

(%) Eq. «3—8) ig then used to determine the new elemental concentrations. Steps

(2) through (4) are then repeated until convergence on ik is obtained.
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